Phase-Switching Liquids Frost 300 Times Longer Compared to Known Anti-Icing Coatings

Ice and frost formation on surfaces afflicts various energy and transportation industries worldwide, causing economic losses in billions of dollars annually. Most techniques to prevent frost and ice formation on surfaces rely heavily on heating or liquid chemicals that need to be reapplied over and over again because...Read More »

New composite materials prolong the service life of spare parts for equipment and vehicles

Studies have shown that hybrid powder materials based on natural layered silicates developed by the chemists of the Far Eastern Federal University (FEFU) and the Far Eastern Branch of the Russian Academy of Sciences (FEB RAS) decrease the friction ratio in metals sevenfold. These new materials offer...Read More »


Small flying robots pull objects up to 40 times their weight using adhesion

Researchers from EPFL and Stanford have developed small drones that can land and then move objects that are 40 times their weight, with the help of powerful winches, gecko adhesives and microspines.

A closed door is just one of many obstacles that no longer pose...Read More »


Engineers create most wear-resistant metal alloy in the world

If you’re ever unlucky enough to have a car with metal tires, you might consider a set made from a new alloy engineered at Sandia National Laboratories. You could skid — not drive, skid — around the Earth’s equator 500 times before wearing out the tread.

Sandia’s...Read More »


Environmentally friendly waterproof coating developed

Fabrics that resist water are essential for everything from rainwear to military tents, but conventional water-repellent coatings have been shown to persist in the environment and accumulate in our bodies, and so are likely to be phased out for safety reasons....Read More »


Stability of vacuum oil in space

A research team from the Research Institute of Mechanics, MSU together with a colleague from the Center of New Space Technologies, MAI described the behavior of a liquid sheet (vacuum oil) propagating in open space. The results of the study were published in the Physics of Fluids journal.Under...Read More »


Roughness of the solid particles controls the viscosity of suspension

The internet is full of videos of people having fun running over white slime. It almost looks as if they were walking on water. But when they stand still, they slowly begin to sink. The slime in question is usually a concentrated suspension comprising cornstarch and water. Although...Read More »


Hydrogen embrittlement in high-strength steels

Manufacturers of vehicle and machine components often use high-strength steels to save material in lightweight construction and for crash-relevant structural components that require exceptionally high durability. When welding these components, various factors may lead to the unwanted formation of fine cracks, which may spread and even lead to...Read More »


Bio-based material stronger than steel and spider silk altogether

Researchers at KTH have produced a bio-based material that is reported to surpass the strength of all known bio-based materials whether fabricated or natural, including wood and spider silk.

Working with cellulose nanofibre (CNF), the essential building block of wood and other plant...Read More »


Employing machine learning to create wear and corrosion resistant metallic glass

If you combine two or three metals together, you will get an alloy that usually looks and acts like a metal, with its atoms arranged in rigid geometric patterns.

But once in a while, under just the right conditions, you get something entirely new: a futuristic alloy called metallic...Read More »


Detect stress and fracture using color changing elastomers - mechanochromic sensors

Biological materials have complex mechanical properties that are difficult to reproduce using synthetic materials. An international team of researchers, including Dr. Andrey Dobrynin, a professor in The University of Akron’s College of Polymer Science and Polymer Engineering, has produced a biocompatible synthetic material that behaves like biological tissue...Read More »


Low-temperature steel hardening - a new way

EU-funded researchers developed a novel process for surface hardening of stainless steel that ensures high hardness with extraordinary corrosion and fatigue resistance properties.

Stainless steel is the material of choice in various industries where corrosion resistance is of utmost importance, take for instance parts that are exposed...Read More »


Triboelectric nanogenerator to harvest energy from rain droplets

Despite the numerous advances in solar cells, one thing remains constant: cloudy, rainy conditions put a damper on the amount of electricity created. Now researchers reporting in the journal ACS Nano have developed hybrid solar cells that can generate power from raindrops.

In areas where it frequently...Read More »


The Next Mars Rover Wheels Designed To Prevent Wear

The Curiosity Rover has made some incredible discoveries during the five years it has been operating on the surface of Mars. And in the course of conducting its research, the rover has also accrued some serious mileage. However, it certainly came as a surprise when during a routine examinations...Read More »


Droplet friction is similar to solid friction

Researchers of the Max Planck Institute for Polymer Research have investigated friction of liquid droplets on surfaces. A larger force is needed to set in motion stationary droplets than to keep moving droplets in motion. This behavior is already known for solids on surfaces. For the case of...Read More »


Metal with Memory: Shaping the Future of Aviation

While aeronautics researchers across the globe continue to develop technologies that will make air travel more efficient, more sustainable and safer, there is a group of NASA researchers who are altering the long-held view that wings have to stick straight out from an aircraft and stay that way.

Through NASA’s Convergent...Read More »


Improved bonding of low friction PTFE

The convenience of non-stick, Teflon-coated cookware is appreciated in kitchens worldwide, particularly by anyone doing the washing up. The chemical making up Teflon, polytetrafluoroethylene or PTFE, is one of the slipperiest materials known. Outside the kitchen, the low-friction surfaces and high chemical resistance of PTFE are essential to...Read More »


World’s most powerful large-size bearing test centre in operation

SKF has a broad portfolio of extremely powerful software for the calculation and simulation of all types of rolling bearings. Among these are highly complex systems, which can investigate bearing behaviour in a virtual environment: With the...Read More »


Rare earth oxides make water-repellent surfaces that last

Ceramic forms of hydrophobic materials could be far more durable than existing coatings or surface treatments.

Water-shedding surfaces that are robust in harsh environments could have broad applications in many industries including energy, water, transportation, construction and medicine. For example, condensation of water is a crucial part of many industrial processes,...Read More »


New lubricated mussel-proof coating

It all began with a bet.

At a conference in Italy in 2013, Nicolas Vogel, then a postdoctoral fellow in Joanna Aizenberg’s lab at the Wyss Institute for Biologically Inspired Engineering at Harvard University and Harvard’s John A. Paulson School of Engineering and Applied Sciences (Read More »


Graphene based solid lubricant reduces friction and wear

This composite image depicts the makeup and performance of a new non-liquid lubricant developed by researchers at Purdue University. (Purdue University image/ Abdullah A. Alazemi) Download image.

WEST LAFAYETTE, Ind. – Researchers have created a new type of...Read More »


The Science of Friction on Graphene

 

Sliding on flexible graphene surfaces has been uncharted territory until now,

Graphene, a two-dimensional form of carbon sheets just one atom thick, has been the subject of widespread research, in large part because of its unique combination of strength, electrical conductivity, and chemical stability. But despite many years of study, some...Read More »


Metallic Glass Gears for NASA Robots

Throw a baseball, and you might say it’s all in the wrist.
For robots, it’s all in the gears.

Gears are essential for precision robotics. They allow limbs to turn smoothly and stop on command; low-quality gears cause limbs to jerk or shake. If you’re designing a robot to scoop samples...Read More »


Zeroing in on ZDDP tribofilm growth

Models for the stress-activated growth of tribofilms from ZDDP were modified to include wear.

TWO RECENT CUTTING EDGE ARTICLES reported on work that showed the growth rates of tribofilms from ZDDP were accelerated by contact stress1 or interfacial shear2 under conditions in which the temperature rise caused by rubbing was negligible....Read More »


'Space Fabric' Links Fashion and Engineering

Raul Polit Casillas grew up around fabrics. His mother is a fashion designer in Spain, and, at a young age, he was intrigued by how materials are used for design.

Now, as a systems engineer at NASA’s Jet Propulsion Laboratory in Pasadena, California, he is still very much in the world...Read More »


Hard, but highly elastic form of carbon developed

Washington, DC— A team including several Carnegie scientists has developed a form of ultrastrong, lightweight carbon that is also elastic and electrically conductive. A material with such a unique combination of properties could serve a wide variety of applications from aerospace engineering to military armor.

Carbon is...Read More »


Harvesting friction energy in self-sustaining water motion sensors

A recent study, affiliated with UNIST has engineered a self-sustaining sensor platform to continuously monitor the surrounding environment without having an external power source.

This research has been led by the team of Professor Jaehyouk Choi of Electrical and Computer Engineering at UNIST in collaboration with Professor Wonjoon Choi of Mechanical...Read More »


Triboelectric generators can be used to improve mass spectroscopy sensors

Triboelectric nanogenerators convert mechanical energy harvested from the environment to electricity for powering small devices such as sensors or for recharging consumer electronics. Now, researchers have harnessed these devices to improve the charging of molecules in a way...Read More »


Triboelectricity to power your watch

Despite the many advances in portable electronic devices, one thing remains constant: the need to plug them into a wall socket to recharge. Now researchers, reporting in the journal ACS Nano, have developed a light-weight, paper-based device inspired by the Chinese and Japanese arts of paper-cutting that can...Read More »


Environmentally friendly oleophobic coating for your clothes

When you spill pasta sauce on your favorite shirt but there is no trace of it after being washed, you can thank oleophobicity, a resistance to oil commonly applied to textiles.

That resistance, however, comes at a price. The coating that makes textiles oil resistant is fluorine-based and breaks down into...Read More »


Fight friction with plasma

For road vehicles, wind resistance increases fuel consumption. But one way to fight wind is with wind. Researchers in Sweden are experimenting with reducing drag on trucks with electric wind devices that mimic the way vortex generators increase lift on airplane wings.

You might have noticed them...Read More »


Wear Resistant Self Healing Hydrophobic Coatings

Unbreakable: Water-Repellent Coating | MSE Anish Tuteja

Anish Tuteja, Associate Professor of Materials Science and Engineering and Associate Professor of Macromolecular Science and Engineering, and his research group have created...Read More »


ZDDP Tribofilm: Durability and Chemistry

The classical lubrication theory suggests the use of oil to reduce wear by the development of a thin separating lubricating film. However, the trends in the industry dictate miniaturization of the mechanical devices with a concurrent increase in the load carrying capacity. This in turn brings the surfaces to a...Read More »


Tuning dry friction with micro-honeycomb patterns

Controlling friction is one of the top priorities for many tribologists. The friction in bearings has to be reduced to increase the energy efficiency of numerous devices, while friction in transmission systems has to be increased for effective power transmission.

Recently, a joined group of researchers from...Read More »


Graphene tribolayer adsorption onto steel via perpendicular lattice alignment

 

Owing to its phenomenal physical properties, graphene continues to be investigated as a new lubricating agent. Recent studies have focused on graphene’s ability to lubricate interacting steel surfaces by its ease of shear capability. Certain graphene-containing lubricating solutions have proven to reduce steel-on-steel wear by four orders of magnitude, with...Read More »


Triboelectricity - a big renewable energy source

Tribo-electric effect is an effect of electricity generation, when two dissimilar materials come into contact and electrons migrate from one to another. Most of us have observed the tribo-electric effect in their life when rubbed a balloon at the birthday party against someone’s hair. The effect was the base for...Read More »


Evolving friction of graphene

Two-dimensional materials are defined as substances with the thickness less than few nanometers. While there may exist around 500 of various 2D materials, the first discovered 2D material is graphene. Graphene is flexible, transparent, possesses higher conductivity than copper and is stronger than steel –  no...Read More »


In Situ Generation of Graphene

Graphene has unique properties and is being extensively used in various applications. It got a deserved attention in the field of tribology as well and was reported to lead to the states of superlubricity (see Macroscale superlubricity, Reduce the Friction with Graphene Balls, Superlubricity...Read More »


Decrease Friction with Hydrogen Ions

Currently, a large portion of consumed energy is used to overcome friction. Design of low friction components is a primary goal in building a sustainable society. Superlubricity, the state of ultralow friction (<0.01), has already been achieved in various systems ranging from atomic to microscales. In these...Read More »


The Mechanism of Glycerol Superlubricity

Glycerol is a highly viscous liquid, generating friction coefficient of 0.1 and up for bearing steels in boundary lubrication. In full film EHL, pure glycerol generates high friction as well and therefore is rarely used as a lubricant. It is, on the other hand, non-toxic and bio degradable, hence...Read More »


Superlubricity of nanodiamonds glycerol colloidal solution

Earlier we reported about superlubricity achieved with a mixture of water and 30 [wt%] glycerol by researchers from Tsinghua University, Beijing. The same investigators just published a paper using this as a base lubricant and improving its wear resistance by creating a colloidal solution...Read More »


Superlubricity between steel surfaces with glycerol/water mixture lubricant

It is estimated that the energy lost due to friction in industrialized countries equals to approximately 5% of their gross national products and it is clear, that reducing the friction is highly desirable.

The classical lubrication mechanism of the friction reduction has reached its fundamental limit (the friction of 0.01-0.04) and...Read More »


Antiwear tribofilm growth - AFM study

In a wide range of tribological components, the lubricant is not capable of separating the surfaces and areas of metal-to-metal contact occurs. However, the metal-to-metal contact area can be minimized by the action of additives, which are widely used in the lubricants. They proved to form protective tribofilms on the...Read More »


Superlubricity in graphene nanoribbon - gold interface

Superlubricity is a phenomenon of vanishing friction, which can be used to increase the efficiency of many mechanical devices and reduce the energy costs. The phenomenon is not well understood and mostly is observed in nano and micro scales. A further understanding is needed to transfer the superlubricity into the...Read More »


Graphene_SPM

Reduce the Friction with Graphene Balls

Tiny, sub-micron sized particles are frequently used as additives in the lubricants to improve their frictional and wear behavior. These particles, due to their size, can enter the contact and protect the surfaces from the direct contact in the cases when the base lubricant is not capable of doing it,...Read More »


Ice friction and frictional heat

As it was already pointed in the recent post, the friction on ice is an important topic and its typical low value is attributed to the formation of the water film.

Despite our everyday life experience, at low speeds, the ice friction can be quite large. For example, at the...Read More »


Experimental measurement of adhesion and friction in mesoscopic graphite contacts

Two-dimensional materials, such as graphite, expose an intriguing, but poorly understood low-friction behavior  – superlubricity. Various aspects of superlubricity have been addressed by researchers, mostly based on theoretical considerations, however, accurate experimental measurements of adhesion and friction in 2D materials have not been performed until recently.

A team at IBM Research-Zurich...Read More »


Macroscale superlubricity

 

Friction rises when bodies come to contact and start relative sliding. This phenomenon occurs in many mechanical systems and it is estimated that over 30% of the fuel in cars is consumed to overcome friction. Taking into account the ongoing battle with the global heating, reduction of these losses is...Read More »