An Engineered Salvinia-like Slippery Surface

The surface properties of materials are often critical because they dictate how they react with their external environment. An important property currently under intense investigation is how surfaces interact with liquids like water.

In a wide range of industrial applications, superhydrophobic surfaces (SHPOS) play an important role....Read More »

Structural Lubricity: A Recent Overview

Tribology is largely concerned with understanding of the (friction) forces acting at the interface between objects moving against each other (Menezes et al., 2013). Over the recent years there has been significant progress in understanding and controlling friction, and in the beginning of 1990s, a new...Read More »

Close Examination of Frictional Wear on an Atomic Scale

Friction and wear have long been a focus of scientists, researchers, engineers, and industries around the world. The common goal is to maximize profits, however, the environmental impact becomes even more important. Wear and friction on machinery and its various components work against...Read More »

A New Way to Understand Friction

Friction is a part of everyday life. Most of us do not think about friction at all, except perhaps when we are trying to push something heavy along the floor, cursing the friction that it is making it more difficult.

Friction has its useful aspects,...Read More »

Superlubricity of carbon nanotubes as a prerequisite for mechanically activated ionic transport

The field of nanofluidics is the study of the behavior, control and manipulation of fluids that are confined in extremely small structures. The dimensions of these minute structures typically range from 1 nanometer to 100 nanometers (1 nm = 10-9 m). The fluids constrained within these nanostructures...Read More »

Biodegradable Triboelectric Nanogenerators to Power Implantable Sensors

The article was written by Dr. Aydar Akchurin

Energy harvesting (also sometimes called scavenging) is a process of energy derivation from the ambient sources, e.g., sunlight, wind, heat, mechanical vibrations, etc.  The main idea is that...Read More »

Origins of Sliding Friction

Origin of sliding friction: role of lattice trapping

The article was co-authored by Dr. Avinash Tiwari, Postdoctoral Researcher at Forschungszentrum Jülich.
The article was co-authored by Dr. Jianjun Wang, a visiting scholar...Read More »

Friction Forces Between 2D Materials and Liquids

2D materials deserved an interest in material science and other disciplines due to their exciting electronic, mechanical, and optical properties. The unique behavior of these materials originate from very strong in-plane atoms interactions and very weak van der Waals out-of-plane interactions. Graphene, a single layer of carbon...Read More »

High Hardness Boron Rich Boron Carbide is Synthesized using CVD

The article was written by Dr. Aydar Akchurin

Hardness is a material’s resistance to plastic deformation and this property is widely used to rank materials for various engineering applications. Hard materials can be used for cutting,...Read More »

Atomic scale deformation responsible for surface roughness

The article was written by Dr. Aydar Akchurin

Most of the natural or engineered surfaces are not perfect, meaning they are rough. The surface roughness was found across many scales: from atomic to tectonic. The earth looks...Read More »

Physicists are one step closer to understand lubrication at nanoscale

The article was written by Dr. Aydar Akchurin

The famous picture of transportation of an Egyptian statue to the grave of Tehuti-Hetep, El-Bersheh indicates that the concept of lubrication was already known to ancient Egyptians. The...Read More »

Roughness of the solid particles controls the viscosity of suspension

The internet is full of videos of people having fun running over white slime. It almost looks as if they were walking on water. But when they stand still, they slowly begin to sink. The slime in question is usually a concentrated suspension comprising cornstarch and water. Although...Read More »

Bio-based material stronger than steel and spider silk altogether

Researchers at KTH have produced a bio-based material that is reported to surpass the strength of all known bio-based materials whether fabricated or natural, including wood and spider silk.

Working with cellulose nanofibre (CNF), the essential building block of wood and other plant...Read More »

Levitated nanoparticles reveal the crucial role of friction in state transitions at nanoscale

Experiments with levitated nanoparticles reveal role of friction at the nanoscale

Transitions occurring in nanoscale systems, such as a chemical reaction or the folding of a protein, are strongly affected by friction and thermal noise. Almost 80 years ago, the Dutch physicist Hendrik Kramers predicted that such transitions...Read More »

Researchers simulate wear of materials as they rub together

Forty years ago, MIT emeritus professor of mechanical engineering Ernest Rabinowicz calculated that 6 percent of the annual U.S. gross domestic product was lost through mechanical wear. His assertion gained enough traction that it became known as the “Rabinowicz Law.”

“Even so, the mechanism by which mechanical...Read More »

Bi-layered materials: graphene - no heat, no friction; h-BN - as strong as diamond.

A group of researchers from Queen’s University Belfast have discovered a stretchy miracle material that could be used to create highly resistant smart devices and scratch-proof paint for cars.

Led by Dr Elton Santos from the University’s School of Mathematics and Physics, an international team of researchers...Read More »

Triboelectric charges on HDPE are strain induced

New research indicates how static electricity puts the charge in material, offering answer to centuries-old question

For centuries, scientists have tried to understand triboelectric charging, commonly known as static electricity.

Triboelectric charging causes toner from a photocopier or laser printer to stick to paper,...Read More »

Nanotechnology Flight Test

Mastering the intricacies of controlling matter at the nanoscale level is part of a revolutionary quest to apply nanotechnology to benefit industrial processes. A key element of that technology is the use of carbon nanotubes.

Carbon nanotubes are small hollow tubes with diameters of 0.7 to 50...Read More »

Triboelectricity to collect wave power

Nature provides three sources of energy for free: sunlight, air and gravity. Solar and wind power are increasingly exploited, gravity less so. Hydraulic power plants harvest energy from flowing rivers. Tidal energy can be gathered along some inlets and coasts. But few places are suitable for dams or...Read More »

Ice crystals formation is controlled by the surface texture - new study shows

WASHINGTON (May 17, 2017)—A new study examining how ice forms from pure water found that the geometry of the surface that water is on can have an effect on whether or not it freezes, suggesting that surface geometry plays an important role in ice formation. Greater understanding of...Read More »

Three-dimensional subatomic scale AFM can measure friction

Atomic force microscopy (AFM) is an extremely sensitive technique that allows us to image materials and/or characterize their physical properties on the atomic scale by sensing the force above material surfaces using a precisely controlled tip. However, conventional AFM only provides the surface normal component of the force...Read More »

Triboelectric generators can be used to improve mass spectroscopy sensors

Triboelectric nanogenerators convert mechanical energy harvested from the environment to electricity for powering small devices such as sensors or for recharging consumer electronics. Now, researchers have harnessed these devices to improve the charging of molecules in a...Read More »

Friction Velocity Dependence - Breaking Friction Laws

Controlling friction is one of the main goals in modern tribology. Due to complexity of the tribological processes, up to date the problem remains mainly unsolved. While classical tribology relies on the famous friction laws, developments in nanotribology made it evident that these laws...Read More »

Controlling friction of graphene

Graphene, a wonder just one atom thick material, shows incredible wear-resistance and super low friction levels. This behavior is ascribed to its low inter-layer shear properties and high normal load carrying capabilities. However, in many cases controlling friction is preferable. Apparently, this is possible with graphene, which makes it...Read More »

Switchable Friction on Graphene

Graphene is a unique material in many aspects and has recently been applied in various ways. In tribology, it has been shown to lead to a superlubricity – an ultra low friction state. In laboratory air, graphene was reported to show twofold symmetry in friction and anisotropy...Read More »

2D Materials Elastic Properties - AFM-Hertz Methodology


2D materials are single or only few atomic layer thick and posses unique properties with potential in many technological fields. They are highly anisotropic, having significantly different properties in-plane and perpendicular-to-the-plane. For example, graphene, one of the most explored 2D materials, has the in-plane Young’s modulus , whereas the perpendicular-to-the-plane...Read More »

Superlubricity by means of repulsive van der Waals forces

Superlubricity, a state of low friction (<0.001), can be achieved by different mechanisms. The structural superlubricity occurs, if the crystal lattices of the contacting bodies are incommensurate. Nano-scrolls may act as a bearing and may also lead to the superlubricity state by...Read More »

Relativistic Tribology, Tribo Plasma

Gravitational waves were proved to exist, thus validating one more prediction by Albert Einstein and his general theory of relativity! Is there any relation between the relativity and Tribology? It looks like there is! “Micromechanisms of Friction and Wear: Introduction to Relativistic Tribology” is a fascinating book, where...Read More »

Superlubricity state through atom-by-atom surface tuning

Friction is everywhere around us, working against motion of cars, airplanes, their engines, wind mills and other devices causing wear and decreasing their energy and overall performance efficiency. However, there exists a certain state, called superlubricity, at which the friction vanishes. This effect can potentially lead to significant improvements in...Read More »