Friction Coefficient Tables in Air and Vacuum

Sketch of Leonardo da Vinci

Revision for “Friction Coefficient Tables in Air and Vacuum” created on February 10, 2019 @ 17:02:15

Friction Coefficient Tables in Air and Vacuum
<h1>Friction coefficient table of solid lubricants, metals, plastics and anti-friction materials</h1> Friction coefficient table for various material pairs in atmosphere and vacuum (see the definition of <a href="" target="_blank" rel="noopener">friction coefficient</a>) is shown below. The data was collected from various sources [1,2,3]. <table width="541"> <tbody> <tr> <td style="text-align: center;" width="207">Material Combination</td> <td style="text-align: center;" width="151">Friction coefficient in air</td> <td style="text-align: center;" width="183">Friction coefficient in vacuum</td> </tr> <tr> <td style="text-align: center;">Fe-Fe</td> <td style="text-align: center;">0.3</td> <td style="text-align: center;">1.9</td> </tr> <tr> <td>Fe-Mg</td> <td>1</td> <td>0.6</td> </tr> <tr> <td>Fe-Cd</td> <td>1.5</td> <td>0.4</td> </tr> <tr> <td>Fe-Pb</td> <td>0.9</td> <td>0.4</td> </tr> <tr> <td>Stainless Steel -Stainless Steel</td> <td>0.5</td> <td>2.9</td> </tr> <tr> <td>Stainless Steel - Cu</td> <td>-</td> <td>0.3</td> </tr> <tr> <td>Stainless Steel-Al</td> <td>0.4</td> <td>0.3</td> </tr> <tr> <td>Stainless Steel-Mo</td> <td>-</td> <td>0.8</td> </tr> <tr> <td>Stainless Steel-Ni</td> <td>-</td> <td>0.8</td> </tr> <tr> <td>Stainless Steel-Teflon</td> <td>-</td> <td>0.2</td> </tr> <tr> <td>Stainless Steel-Si</td> <td>-</td> <td>0.2</td> </tr> <tr> <td>Stainless Steel-Ge</td> <td>-</td> <td>0.2</td> </tr> <tr> <td>Stainless Steel-Glass</td> <td>-</td> <td>0.5</td> </tr> <tr> <td>Chromium Steel - Chromium Steel</td> <td>0.5</td> <td>0.5</td> </tr> <tr> <td>Cu-Cu</td> <td>0.5-1.0</td> <td>4.8-21.0</td> </tr> <tr> <td>Cu-Ni</td> <td>0.6</td> <td>1.5-2.0</td> </tr> <tr> <td>Al-Al</td> <td>0.8</td> <td>1.6-2.2</td> </tr> <tr> <td>Al-Ni</td> <td>-</td> <td>2.4</td> </tr> <tr> <td>Al-Cu</td> <td>-</td> <td>1.5</td> </tr> <tr> <td>Al-Ag</td> <td>-</td> <td>2.2</td> </tr> <tr> <td>Brass-Brass</td> <td>0.4</td> <td>0.7</td> </tr> <tr> <td>Ni-Ni</td> <td>-</td> <td>4.9</td> </tr> <tr> <td>Ag-Ag</td> <td>-</td> <td>3.9</td> </tr> <tr> <td>Cr-Cr</td> <td>0.6</td> <td>3</td> </tr> <tr> <td>Au-Au</td> <td>0.6</td> <td>4.5</td> </tr> <tr> <td>Zn-Zn</td> <td>1</td> <td>3</td> </tr> <tr> <td>Zr-Zr</td> <td>-</td> <td>1.5</td> </tr> <tr> <td>Chromium Steel - MoS2 (vacuum deposition)</td> <td>-</td> <td>0.06</td> </tr> <tr> <td>Chromium Steel - MoS2 (friction deposition)</td> <td>-</td> <td>0.06</td> </tr> <tr> <td>Cu-MoS2</td> <td>0.2</td> <td>0.07</td> </tr> <tr> <td>Brass-Steel</td> <td>0.35</td> <td>-</td> </tr> <tr> <td>Tire - Asphalt</td> <td>0.72</td> <td>-</td> </tr> <tr> <td>Tire - Grass</td> <td>0.35</td> <td>-</td> </tr> <tr> <td>Diamond - Diamond</td> <td>0.1</td> <td>-</td> </tr> <tr> <td>Glass - Glass</td> <td>0.9-1.0</td> <td>-</td> </tr> <tr> <td>Graphite - Steel</td> <td>0.1</td> <td>-</td> </tr> <tr> <td>Graphite - Graphite</td> <td>0.1</td> <td>0.5-0.8</td> </tr> <tr> <td>Ice - Ice</td> <td>0.02-0.09</td> <td>-</td> </tr> <tr> <td>Ice - Steel</td> <td>0.03</td> <td>-</td> </tr> <tr> <td>Wood - Wood</td> <td>&gt;0.2</td> <td>-</td> </tr> <tr> <td>Polytetrafluoroethylene - Polytetrafluoroethylene</td> <td>0.04</td> <td>-</td> </tr> </tbody> </table> <h1>Steel friction coefficient table</h1> [table id=9 /] <h1>Friction Coefficient of Wood, Leather, and Stone</h1> [table id=11 /] <h1>Sliding Friction Coefficient Table for Selected Ceramic Materials (Room Temperature in Air)</h1> [table id=12 /] <h1>Ice friction coefficient</h1> Depending on pressure, temperature, and the conditions of formation, ice can take on any of at least eight allotropic forms, the largest number for any known substance. These changes impact the friction coefficient behavior, as shown in the figure below. [caption id="attachment_26890" align="aligncenter" width="790"]<img class="size-full wp-image-26890" src="" alt="ice friction coefficient" width="790" height="631" /> Friction coeffi cient for stainless steel and ice on polycrystalline ice as a function<br />of temperature, [3].[/caption][table id=13 /] <h1>Friction coefficient table for materials in fretting regime</h1> In <a href="" target="_blank" rel="noopener">fretting</a>, friction coefficients are different for the same pairs of materials due to changes in friction mechanisms. These tables include some data for commonly used materials. [table id=7 /] <h1>Friction coefficient table in fretting regime as a function of humidity</h1> [table id=8 /] [1]. Mechanics and Physics of Precise Vacuum Mechanisms, E.A. Deulin, V.P. Mikhailov, Yu.V. Panfilov, R.A. Nevshupa. [2]. [3]. Friction Science and Technology: From Concepts to Applications, Peter J. Blau, 2005 &nbsp;

OldNewDate CreatedAuthorActions
February 10, 2019 @ 17:02:15 tribonet
February 3, 2019 @ 13:00:22 tribonet
February 3, 2019 @ 12:47:46 tribonet
February 3, 2019 @ 12:21:02 tribonet
February 3, 2019 @ 12:09:06 tribonet
November 29, 2018 @ 09:50:12 tribonet
November 16, 2018 @ 21:25:39 tribonet
November 16, 2018 @ 21:21:39 tribonet
November 16, 2018 @ 21:04:34 tribonet
November 16, 2018 @ 21:03:01 tribonet
October 28, 2018 @ 22:11:47 tribonet
October 28, 2018 @ 22:10:04 tribonet
About tribonet 167 Articles
Administration of the project