Tribology in e-Mobility Boris Zhmud

Powertrain of a Battery Electric Vehicle (BEV)

Audi e-tron powertrain, front electric motor (Source: ElectricHasGoneAudi.net)

EV Transmission vs ICEV Transmission

Loads and Speeds

Vehicle wheels won't rotate over 1000 rpm at legal speeds. Ø 29": 119 rpm at 16 km/h (10 mph); 595 rpm at 80 km/h (50 mph); 833 rpm at 113 km/h (70 mph)

For an ICE: usual working range 1000-6000 rpm with max power close to the redline. Electric motor may go over 20,000 rpm, instant high torque available at low rpm

Wide Diversity of Hardware

BorgWarner 1-speed eGearDrive

ZF 2-speed EV transmission

Eaton 4-speed HD EV transmission

Tribological Problems

- Gear tribology (friction, wear, scuffing, pitting, NVH)
- Bearings
- Seals
- Insulating materials
- Transmission fluids

EV Bearings

Electrically Induced Bearing Damage (EIBD)

Root cause: Shaft voltage – the voltage difference between the motor shaft and the frame

Remedies: Bearing insulation, Hybrid ceramic bearings, Shaft grounding, Common mode chokes, Conductive greases, etc.

EV Seals

Low friction (PTFE, FKM, composites) High speed (surface speeds upto 50 m/s) Wet, dry or minimum lubrication running Chemical and thermal stability Electric properties (conductive or insulating)

EV Transmission Fluids

Differences from Conventional Transmissions

- \circ Higher input shaft speeds
- $\circ~$ Higher torques for budget cars
- Higher amplitude of alternating stresses
- No clutch (for 1-speed gearboxes)
- \circ Presence of electrical circuits
- Higher NVH requirements

Electrical Clutch conductivity traction ATF EVF Corrosion Shear protection stability Oxidation Heat stability transfer

But what is "conventional"? Manual, Automatic, Dual-Clutch, CVT?

Cat-and-Mouse Development Game

Most e-transmission hardware is developed relying upon the existing transmission fluid technology. As a result, the existing transmission fluids often are an acceptable choice for this hardware.

Transmission		Manufacturer	FHEV / BEV (Placement)	Total Sales* (millions)	Top Models	Fluid Type (brand name)
EVT		Toyota	FHEV (P23)	17.2	Toyota Prius	ATF (Toyota WS)
		Honda	FHEV (P13)	1.2	Honda Accord	ATF (Honda DW-1)
АТ		Hyundai	FHEV (P2)	0.6	Hyundai Sonata	ATF (Hyundai SP-IV)
		ZF Group	FHEV (P2)	0.5	BMW 5-Series	ATF (ZF Lifeguard 8)
сут		Subaru	FHEV (P2)	0.1	Subaru Forester	CVTF (Subaru CVTF)
		Jatco	FHEV (P2)	0.1	Nissan X-Trail	CVTF (Nissan NS-3)
DOT Dry		Honda	FHEV (P2)	1.2	Honda Fit	ATF (Honda DW-1)
	Wet	VW	FHEV (P2)	0.4	VW Passat	DCTF (EG 52529)
RED		Nissan	BEV (P4)	1.6	Nissan Leaf	ATF (Nissan Matic-S)
		Tesla Motors	BEV (P4)	1.3	Tesla Model 3	ATF (Tesla High Perf.)
		GM	BEV (P4)	0.2	Chevy Bolt	ATF (DEXRON® HP)

* Cumulative sales of all vehicle models through model year 2020

Requirements for High-Speed EV Gears

Tight dimensional tolerances, usually ISO 1328 Grade 6 or better
 The ability to withstand rated torque

□ Higher surface finish quality requirements (NVH, efficiency)

Common deviations and their impact on performance Ref: Kharka et al Int J Adv Manuf Technol 109, 1681–1694 (2020).

Mass Finishing Processes

Triboconditioning[®] CG A Mechanochemical Mass Finishing Process

Oblique impacts of hard beads burnish the surface:

Generates compressive stresses

Features shared with mass finishing Deburring Rounding edges Reducing surface roughness Eliminating directional anisotropy from grinding

Features unique for Triboconditioning

- Tribofilm priming
- Compressive stress buildup

The Effects on Surface Roughness and Waviness

Before treatment
 After treatment

Surface roughness profile modification:

- Plateau-like (negative skewness)
- Reduced amplitude roughness
- Reduced gradient roughness

Gear Tribology Simulations

Thermal Elasto-Hydrodynamic Lubrication Model:

- Reynolds equation
- Roelands equation for viscosity-pressure and -temperature dependence
- Dowson-Higginson for density-pressure and -temperature dependence
- Carreau equation for the shear thinning effect
- Energy conservation and heat transfer equations
- EHD film thickness calculated according to Guilbault contact model

		,
	Temp1	Temp2,
,	40,	100,
,	30.5,	5.8,
,	1.3e-8,	1.1e-8,
,	7.0,	0.9,
,	1.0,	1.0,
,	1880,	
,	0.14,	
,	830,	
,	15,	
,	6.4e-4,	
,	0.5,	
,	0.005,	
,	60,	
)))))))))))))))))))	Temp1 , 40, , 30.5, , 1.3e-8, , 7.0, , 1.0, , 1.0, , 1880, , 0.14, , 830, , 15, , 6.4e-4, , 0.5, , 0.005, , 60,

Example 1: FZG Spur Gears

Ground gears

Ra = 0.3 micron Skewness = -0.5 Kurtosis = 3.5

Type:(E - external-external)		ternal_worm)	-
Type:(L = excernal-excernal)	(W - CX	Gear1	Gear2.
Number of Teeth		16.	24,
Tip Diameter (mm)	,	83.2,	117.4,
Addendum Coefficient		1,	1,
Dedendum Coefficient	,	1.25,	1.25,
Profile Shift Coefficient	,	0.27,	0.05,
Cutter Fillet Coefficient	,	0.38,	0.38,
Face Width (mm)	,	20,	20,
Tip Relief Length (mm)		4,	3,
Tip Relief Magnitude (mm)	,	0.02,	0.02,
Root Relief Length (mm)	,	0,	0,
Root Relief Magnitude (mm)	,	0,	0,
Face Relief Length (mm)	,	0,	0,
Face Relief Magnitude (mm)	,	0,	0,
Face Slope Modification (mm)	,	0,	0,
Face crown Magnitude (mm)	,	0,	0,
Tip Bias at W = 0 (mm)	,	0,	0,
Tip Bias at W = Fw (mm)	,	0,	0,
Root Bias at W = 0 (mm)	,	0,	0,
Root Bias at W = Fw (mm)	,	0,	0,
Material Properties			,
Elastic Module <mark>(</mark> MPa)	,	206000,	206000,
Poisson Ratio	,	0.3,	0.3,
Density (Kg/m3)	,	7850,	7850,
Specific Heat (J/(kg.K))	,	460,	460,
Thermal Conduct. (W/(m.K))	,	47,	47,
Bulk Temperature (C)	,	60,	60,
Surface Roughness (micron) -			,
Root Mean Square	,	0.13,	0.13,
Skewness	,	-1.5,	-1.5,
Kurtosis	,	5.0,	5.0,
Autocorrelation X	,	100,	100,
Autocorrelation Y		100,	100,

Input parameters: FZG type C gears with tip relief

TCG-treated gears

Ra = 0.1 micron Skewness = -1.5 Kurtosis = 2.5

Predicted Performance Benefits

From Simulations to Testing

- 1 test gearbox,
- 2 load clutch,
- 3 slave gearbox,
- 4 torque and speed sensor,
- 5 motor

• C

Choose the right test: A/8.3/90 A10/16.6R/120 C/0.05/90:120/12

Standard	Load	Stages	for	FZG	Scuffing	Test
----------	------	--------	-----	-----	----------	------

Load Stage	Torque on Pinion (N⋅m)	Tooth Normal Force (N)	Hertzian Contact Pressure (N/mm²)	Total Work Trans- mitted (kW-h)
1	3.3	99	146	0.19
2	13.7	407	295	0.97
3	35.3	1044	474	2.96
4	60.8	1799	621	6.43
5	94.1	2786	773	11.8
6	135.5	4007	929	19.5
7	183.4	5435	1080	29.9
8	239.3	7080	1232	43.5
9	302.0	8949	1386	60.8
10	372.6	11029	1539	82.0
11	450.1	13342	1691	107.0
12	534.5	15826	1841	138.1
12				

FZG scuffing test (ASTM D 5182)

- 1 Test Pinion
- 2 Test Wheel
- 3 Slave Gear
- 4 Load Clutch

- 5 Locking Pin
- 6 Load Lever and Weights
- 7 Torque Measuring Clutch
- 8 Temperature Sensor

Effect of Surface Finish on Running-in and Efficiency

Ref: Mario Sosa, PhD Thesis, KTH, Stockholm, 2017

FZG Test Results: Scuffing, Wear, and Efficiency

NOTE: Scuffing resistance, wear, and efficiency do not necessarily correlate to each other

Gear Oil Viscosity and Gearbox Losses

Viscosity grade	KV40, cSt	KV100, cSt	Density, g cm-3
ISO VG 100	98.1	11.2	0.87
ISO VG 46	46.2	7.0	0.85
ISO VG 22	23.4	5.0	0.83
ISO VG 15	14.5	3.5	0.82

- High-speed gears call for lower viscosity
- Water-based transmission fluids in development
- Challenge with high-torque at the start

Partitioning Friction Losses

Total loss is a sum of

- Gear meshing losses
- Bearings / seals losses
- Churning losses

One can accurately measure only the total loss, as well as the loss at zero load

For energy efficiency, the total loss only is of importance

Example 2: Helical Gears

From TEHD "Micro" to CFD "Macro" Simulations

Two speed reduction gear-box

"We will use simulation if it can deliver **reliable results in a few days**, during the design process. We need to predict and optimize gears lubrication **before the prototype**"

Comer Industries Engineering Manager, 2016

Courtesy E. Fava, Comer Industries

Analysis of Two Limiting Cases

<u>LSHL</u>

Maximum Contact Pressure (MPa)	: 5038.70
Average Asperity Contact Ratio	(%): 18.35
Average Flash Temperature (C):	167.16
Average Friction Loss (W):	241.30
Churning Loss (W):	22.39
Efficiency (%):	99.16
Wear Probability (%):	95.00
Scuffing Probability (%):	5.00

<u>HSLL</u>

Maximum Contact Pressure (MPa):3796.54Average Flash Temperature (C):253.01Average Friction Loss (W):247.76Churning Loss (W):613.37Efficiency (%):99.18Wear Probability (%):95.00Scuffing Probability (%):74.00

Improve cooling at high speed! How? Lower viscosity, OSP, PAG/water...

HSLL (high speed low load)

Roughness, Speed, Velocity, Load

<u>The Hersey number (Lubricant film thickness)</u>: Viscosity (Pa s) x Velocity (m/s) / Load (N/m2) <u>The Lambda ratio</u>: lubricant film thickness / Composite roughness

With decreasing viscosity, gear friction increases, but losses in bearings decrease
Differences in base oil lubricity

Choosing Right Base Oil and Additives

Is the gearbox heavily loaded so that there's a risk of scuffing?

Remedy:

- Switch to a higher viscosity lubricant
- Deploy active sulfur carriers (sulfurized olefins, sulfurized fatty acid esters), aminophosphates

Is gearbox overheating under high speed operation?

Remedy:

- Switch to lower viscosity / higher thermal conductivity lubricant
- Add spray/jet lubrication
- Add heat exchangers

Additives do NOT add

Gear Accuracy and Surface Finish: Finding Balance

Gear accuracy + Mounting accuracy + Lubrication

(a) Profile errors, characterised by a deviation from the nominal profile. These increase noise.

(b) Lead errors, a linear deviation along the face of the tooth. This affects load-carrying capacity.

ISO 1328

- Individual single pitch deviation
- Individual cumulative pitch deviation

For cylindrical gears with diameter 5 to 12 cm:

- Highest accuracy: Single pitch deviation down to 1 um
- Lowest accuracy: Single pitch deviation upto 100 um

High accuracy gears require superfinishing. Low accuracy gears benefit little from superfinishing.

Does Reducing Gear Friction Improve Range?

The average BEV consumes 200 Wh/km (WLTP)

Energy loss in transmission is around 10 Wh/km.

Even if you manage to halve the transmission losses, the range extension will be just 2-3%.

Say, instead of 300 km, you may be able to drive max 310 km ^(C)

Reducing gearbox temperature, improving driving comfort, and ensuring trouble-free operation is far more important than the range!

Ref.: Hengst, J., Werra, M. & Küçükay, F. Evaluation of Transmission Losses of Various Battery Electric Vehicles. Automot. Innov. 5, 388–399 (2022)

Tested by AVL in a High Speed Electric Drive Unit

Testing of new E-drive solution in test bench as well as on-road integrated in Tesla Model S test car successfully verified the capability of withstanding full drive cycles and challenging 30,000 rpm operational speeds

Conclusions

A total system approach is essential for understanding electric powertrain tribology

Hardware design and lubricant/coolant properties must be carefully matched

Ultralow viscosity synthetic fluids appear to be a better fit for high-speed EV reduction transmissions than conventional ATFs.

High-speed gear drives pose higher demands on gear accuracy and surface finish quality.

Mechanochemical surface finishing opens new ways to optimizing tribology for high-speed EV drives (gears, bearings, seals)

